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Comment on ‘‘Dynamical mechanism for coexistence of dispersing species without trade-offs
in spatially extended ecological systems’’

Francois Rollin and Bernard Cazelles*
CNRS UMR 7625, 7 quai Saint Bernard, Case 237, 75252 Paris, France
and UFR de Biologie, Universite´ Paris 7–Denis Diderot, Paris, France

~Received 3 September 2001; published 29 July 2002!

Harrisonet al. @Phys. Rev. E63, 051905~2001!# recently proposed that the temporal synchronization and
desynchronization between populations in different habitats leads to species coexistence and occurs through a
pattern of on-off intermittency. As noise is unavoidable in ecological systems, we show, using the same
example, that ‘‘attractor bubbling’’ appears to be another plausible hypothesis to explain the scenario leading to
species coexistence. The interest of attractor bubbling in ecology is confirmed by other examples concerning
the evolution of intermittent rare species.
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In ecology, it has recently been suggested that dynam
associated with the transverse stability of an invariant s
space~e.g., riddled basins or on-off intermittency! can have
important outcomes and provide working assumptions to
plain observed dynamics@1,2#. For example, on-off intermit-
tency may describe the dynamics of natural populatio
where variable periods of time at low rarity alternate w
sudden outbreaks of high abundance in a seemingly un
dictable way@2,3#.

The aim of a recent paper by Harrisonet al. @4# was to
demonstrate that on-off intermittency can explain the err
alternation of the synchronized-desynchronized behavio
two species abundances in a two-patch ecological sys
leading to species coexistence.

It has been demonstrated that complex nonlinear pop
tion dynamics can produce the appropriate conditions
favor the coexistence of competing species@5,6#. Studying
the coexistence of two different species in a two-patch s
tem, Holt and McPeek@5# showed that coexistence aris
because of the alternation in the system dynamics, betw
two qualitatively distinct dynamical behaviors associa
with temporal variation in the mean dispersal rates. T
populations in the two patches tend to be synchronized w
the frequency of the high-dispersal species is large bec
there is a strong coupling between the two patches. Bu
this nearly synchronized state, dispersal becomes disad
tageous, leading to a decrease in high-dispersal species
hence, over time the patch dynamics becomes progress
uncoupled. As the system evolves towards lower dispe
rates, the dynamics of different patches may become de
chronized, providing the conditions in which dispersal
once again, advantageous.

Then Harrisonet al. @4# argued that this scenario explain
ing the coexistence, synchronization→ desynchronization
→ synchronization→ . . . , with unpredictable time inter-
vals between each phase is a pattern of on-off intermitte
Nevertheless, as noise is unavoidably present in ecolog
systems, another plausible and interesting hypothesis to
plain this scenario leading to coexistence should be ‘‘attr
tor bubbling’’ @7–9#.
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Bubbling of attractors is a form of noise-driven interm
tence associated to locally riddling basins@8#, which appears
with a weakly stable invariant manifold, contrary to on-o
intermittency which is associate to weakly unstable invari
manifold. Noise destroys the stability of the invariant ma
fold which induces a continual sequence of intermittent bu
from the invariant manifold. But as this manifold is asym
totically stable it reattracts typical orbits in its neighborho
@7#.

Here we illustrate the interest of attractor bubbling in u
derstanding the dynamics of competing species in spati
extended systems and we emphasize, with other example
intermittent rare species, that these behaviors might be w
spread and ecologically more likely than on-off interm
tency.

In this study we have used the Holt-McPeek model@5#
and its simplified version for two identical patches@4#. The
Holt-McPeek model is given by

x1~ t11!5~12ex!x1~ t ! f 1~ t !1mexx2~ t ! f 2~ t !,

y1~ t11!5~12ey!y1~ t ! f 1~ t !1meyy2~ t ! f 2~ t !,
~1!

x2~ t11!5~12ex!x2~ t ! f 2~ t !1mexx1~ t ! f 1~ t !,

y2~ t11!5~12ey!y2~ t ! f 2~ t !1meyy1~ t ! f 1~ t !,

wherexi and yi are the two species in patchi, f i(t) is the
density dependent growth function of patchi †f i(t)
5exp„r i@12„xi(t)1yi(t)…/ki #…‡, ki is the carrying capacity,
r i is the growth rate,ex,y is the species dependent dispersi
rate, and (12m) is the cost of dispersal.

Considering one of the two species (yi) with dispersal
rate near zero and with stationary behavior, the dynamic
the high-dispersing species (xi) can be described in the cas
of two identical patches by the simplified version of th
Holt-McPeek model established in@4#

u~ t11!5A exp$r @12u~ t !#%u~ t !,
~2!

v~ t11!5B exp$r @12u~ t !#%@12ru~ t !#v~ t !,
©2002 The American Physical Society01-1
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where A512e1me, B512e2me, u(t)5@x1(t)
1x2(t)#/2k(t), v(t)5@x1(t)2x2(t)#/2k(t), andk(t) is the
time dependent carrying capacities of the two identi
patches@k(t)5k1(t)5k2(t)#.

Figure 1 summarizes some of the results presented
Harrisonet al. @4#. Figure 1~a! shows the intermittent evolu
tion of v(t). The line v50 defined the synchronizatio
manifold of which the stability is characterized by the tran
verse Lyapunov exponent (l'). The ‘‘off’’ state is defined by
the synchronization of the high-dispersal species,v50. Dur-
ing the ‘‘on’’ state the populations of the two patches a
repelled fromv50 and become desynchronized. After som
period of time the trajectories in the ‘‘on’’ state will be rea
tracted toward the ‘‘off’’ state@see, Fig. 1~a!#. Figure 1~b!
displays the distribution of the finite time fluctuations
l'(t) and underlines that in this particular case the synch
nization manifold is slightly unstable (l'*0). Then on-off
intermittency can develop. Figure 1~c! confirms the occur-
rence of on-off intermittency in the behavior ofv(t) showing
that the probability distribution of the ‘‘off’’ phasesP(D)
depends on their durationD as P(D)}Db, with b523/2
the universal scaling coefficient characterizing on-off int
mittency @10#.

Another interesting behavior that can also explain the s
nario leading to the coexistence of dispersing species is
tractor bubbling. To study bubbling we have added so
uniform noise to the equation ofv(t) with intensitys. Fig-
ure 2 summarizes our results. Figure 2~a! displays the inter-
mittent dynamics ofv(t), Fig. 2~b! the distribution of the
transverse Lyapunov exponent, and Fig. 2~c! the power law
of the frequency of laminar phases of durationD. The pattern
of the intermittences shown on Fig. 2 is different from t
previous case~Fig. 1! and is typical of attractor bubbling, i.e
noise-driven intermittences despite that the synchroniza

FIG. 1. On-off intermittency in the simplified Holt-McPee
model~2!. ~a! Intermittent dynamics ofv(t), the difference between
the high-dispersing species (xi) of the two patches.~b! Distribution
of the finite time fluctuations ofl' (lT[l') characterizing the
stability of the synchronization manifold,v50. ~c! Distribution of
the ‘‘off’’ phases ~defined by perfect synchronous dynamicsv50)
of durationD. In ~c! the straight line corresponds to the theoretic
distribution with slopeb523/2. The parameter values arer
54.5, e50.45, andm50.336.
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manifold v50 is asymptotically stable. As the synchroniz
tion manifold is weakly stable@l'&0, see Fig. 2~b!#, it is
locally repelling thus small perturbation will result in a brie
excursion from the synchronization manifold. These des
chronization events recur because the chaotic evolu
brings it into the neighborhood of the repelling trajectori
an infinite number of times. In this case the power law
deviating from the universal power law governing on-off i
termittency (b523/2), and we observeb̂'22.

To corroborate our results about the importance of attr
tor bubbling in population dynamics, we provide another e
ample concerning the evolution of intermittent rare speci

Competition between different species can be modeled
a dynamical system with an invariant subspace correspo
ing to the extinction of one~or more! species@1–3#, for
instancexi50 in the Holt-McPeek model~1!. The loss of
stability of the attractor in the invariant subspace means
the corresponding species (xi) can invade and coexist with
other species (yi) @2#.

Figure 3 displays an example of dynamics associated
attractor bubbling in this particular context with the Ho
McPeek model~1!. Figure 3~a! displays the intermittent dy-
namics of x1(t) @similar erratic dynamics is observed fo
x2(t)#. Figure 3~b! shows the distribution of the transvers
Lyapunov exponent and Fig. 3~c! shows the probability dis-
tribution of the frequency of the phase of rarity@xi(t)50# of
duration D. As in Fig. 2, the pattern of the intermittence
shown on Fig. 3 is typical of attractor bubbling, i.e., nois
driven intermittences with asymptotically stable invaria
manifold xi50. As the invariant manifold is weakly stabl
@l'&0, see Fig. 3~b!#, it is locally repelling thus a smal
perturbation will result in a brief excursion from the invar
ant manifold, i.e., in a brief intermittent invasion of the ra
speciesxi . In this case the probability distribution of th

l

FIG. 2. Bubbling in the simplified Holt-McPeek model~2!. ~a!
Intermittent dynamics ofv(t), the difference between the high
dispersing species (xi) of the two patches.~b! Distribution of the
finite time fluctuations ofl' (lT[l') characterizing the stability
of the synchronization manifold,v50. ~c! Distribution of the ‘‘off’’
phases~defined by perfect synchronous dynamicsv50) of duration

D. In ~c! the straight line corresponds to an estimated slopeb̂
'22. The parameter values arer 54.5, e50.45,m50.350, and
s51028.
1-2
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frequency of the phase of rarity@xi(t)50# shows a well-
defined power law with an estimated scaling coefficientb̂
'21.8.

This type of intermittent behavior associated to a wea
stable submanifold is present in all the models of comp
tion between species employed in Refs.@1–3#. One can also
observe attractor bubbling in population model with pred
tion or host-parasitoid interactions. To illustrate this la
point, we took into account the destabilizing effect of a ge
eralist parasitoid modeled by a Nicholson-Bailey model@11#
that invades a dynamically stable ‘‘host-specialist parasit
community’’ described by a May host-parasitoid model@12#.
The model reads

x~ t11!5x~ t !expH r 1S 12
x~ t !

k1
D J F11

a2y~ t !

k2
Gk2

3exp$2a3z~ t !%,

y~ t11!5x~ t !S 12F11
a2y~ t !

k2
Gk2Dexp$2a3z~ t !%, ~3!

z~ t11!5c3@x~ t !1y~ t !#@12exp$2a3z~ t !%#,

wherex, y, andz are the host, the specialist parasitoid and
generalist parasitoid, respectively.r 1 is the growth rate of the
host, k1 is the carrying capacity of the environment of th
host, aj are the attack rates of the parasitoidj, k2 is the
parameter of the density dependence of the attack functio
the specialist parasitoid, andc3 is the number of generalis
parasitoid produced by infested host.

Figure 4 displays an example of the intermittent dynam
associated to the model~3!. Figure 4~a! shows the intermit-

FIG. 3. Bubbling in the Holt-McPeek model~1! when the in-
variant manifold is defined by the extinction of thexi species.~a!
Intermittent dynamics ofx1(t). ~b! Distribution of the finite time
fluctuations ofl' (lT[l') characterizing the stability of the in
variant manifold,xi50. ~c! Distribution of the ‘‘off’’ phases~de-
fined by the extinction of thexi species! of durationD. In ~c! the

straight line corresponds to an estimated slopeb̂'21.8. The pa-
rameter values aree150.5, r 153, k15100,e250.01, r 253, k2

550, m50.19, ands51024.
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tent behavior of the specialist parasitoidy, Fig. 4~b! shows
the distribution of the transverse Lyapunov exponent a
Fig. 4~c! shows the power law of the frequency of lamin
phases of durationD. The pattern of the intermittence
shown on Fig. 4 appears similar to that of previous figu
~Figs. 2 and 3! and is typical of attractor bubbling.

Here we have explored noise-induced attractor bubb
but another scenario generating attractor bubbling is lin
to parameter mismatches@7,8#. Small changes in some of th
parameters can destroy the invariant manifold~defined by
synchronous dynamics or species extinction!. Nevertheless if
the mismatches are small the attractor that exists in the
variant manifold is replaced by an attractor that is restric
in its neighborhood. Then every orbit that approaches
initial manifold can spent some period of time in its vicini
before bursting away. This sort of dynamics can arise in
simplified model described by Harrisonet al. @4# when the
carrying capacities in the two patches are different@k1(t)
Þk2(t)#. These parameter mismatches break down the
bility and the invariance of the synchronization manifold a
cause the system to burst away from the invariant manif
intermittently even if on average it is attracting.

These results suggest that on-off intermittency is not
only phenomena that can explain the intermittences lead
to the coexistence of competing species in spatially exten
ecological systems. As noise and parameter fluctuations
unavoidable and ubiquitous in ecological systems, interm
tent dynamics associated to attractor bubbling appears t
another interesting mechanism to explain the erratic alte
tion of the synchronized-desynchronized behavior of t
species in a two-patch system, as well as for the dynamic
intermittent rare species.

FIG. 4. Bubbling in a host-parasitoids community model~3!
with a specialist~y! and a generalist parasitoid~z! when the invari-
ant manifold is defined by the extinction of the specialist parasit
(y). ~a! Intermittent dynamics ofy(t). ~b! Distribution of the finite
time fluctuations ofl' (lT[l') characterizing the stability of the
invariant manifold,y50. ~c! Distribution of the ‘‘off’’ phases~de-
fined by the extinction of the specialist parasitoidy) of durationD.

In ~c! the straight line corresponds to an estimated slopeb̂'21.8.
The parameter values arer 152.8, k155, a252.165,k250.3, a3

50.5, c352, ands51027.
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