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Comment on “Dynamical mechanism for coexistence of dispersing species without trade-offs
in spatially extended ecological systems”
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Harrisonet al. [Phys. Rev. B63, 051905(2001)] recently proposed that the temporal synchronization and
desynchronization between populations in different habitats leads to species coexistence and occurs through a
pattern of on-off intermittency. As noise is unavoidable in ecological systems, we show, using the same
example, that “attractor bubbling” appears to be another plausible hypothesis to explain the scenario leading to
species coexistence. The interest of attractor bubbling in ecology is confirmed by other examples concerning
the evolution of intermittent rare species.
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In ecology, it has recently been suggested that dynamics Bubbling of attractors is a form of noise-driven intermit-
associated with the transverse stability of an invariant subtence associated to locally riddling basfi®3, which appears
space(e.g., riddled basins or on-off intermittencyan have  with a weakly stable invariant manifold, contrary to on-off
important outcomes and provide working assumptions to exintermittency which is associate to weakly unstable invariant
plain observed dynamidd,2]. For example, on-off intermit-  manifold. Noise destroys the stability of the invariant mani-
tency may describe the dynamics of natural populationsgo|d which induces a continual sequence of intermittent burst
where variable periods of time at low rarity alternate with from the invariant manifold. But as this manifold is asymp-
sudden outbreaks of high abundance in a seemingly unpresgically stable it reattracts typical orbits in its neighborhood
dictable way[2,3]. _ 7],

The aim of a recent paper by Harrisefi al. [4] was to Here we illustrate the interest of attractor bubbling in un-

demonstrate that on-off intermittency can explain the errati : : . S .
alternation of the synchronized-desynchronized behavior Ocﬁ;ierstandmg the dynamics of competing species in spatially

tio species abundances in a two-patch ecological systerff TTREC MEETE T e BT e B R e,
leading to species coexistence. P ’ 9

It has been demonstrated that complex nonlinear populgiPréad and ecologically more likely than on-off intermit-
tion dynamics can produce the appropriate conditions thaeney-
favor the coexistence of competing spediBs]. Studying In this study we have used the Holt-McPeek mo|
the coexistence of two different species in a two-patch sys@nd its simplified version for two identical patchigd. The
tem, Holt and McPeeK5] showed that coexistence arises Holt-McPeek model is given by
because of the alternation in the system dynamics, between
two qualitatively distinct dynamical behaviors associated X1(t+1)=(1=e )Xy () f1(t) +mexa(t) f5(t),
with temporal variation in the mean dispersal rates. The
populations in the two patch.es tend to be'syn.chronized when y1(t+1)=(1—e))yi()f1(t)+mey,(t) (1),
tEe fre_quency of the hllgh-dl;spersal sEemes is Iarr?e beBcau_se (1)
there is a strong coupling between the two patches. But in i
this nearly synchronized state, dispersal becomes disadvan- Xp(t+1)=(1=edxx(UT2(t) +mexy(D (1),
tageous, leading to a decrease in high-dispersal species and,
hence, over time the patch dynamics becomes progressively Ya(t+1)=(1-€))ya(O)fo(t) +meys (T4 (1),
uncoupled. As the system evolves towards lower dispersal . _ )
rates, the dynamics of different patches may become desyt€rexi andy; are the two species in patehf;(t) is the
chronized, providing the conditions in which dispersal is,d€nsity dependent growth function of patch[fi(t)
once again, advantageous. =§xp(ri[1—(xi(t)+yi(t)_)/ki])], K; is the carrying Ca_pamty_,

Then Harrisoret al. [4] argued that this scenario explain- i IS the growth rateg, , is the species dependent dispersion
ing the coexistence, synchronization desynchronization 'até; and (+m) is the cost of dispersal.
— synchronization— ..., with unpredictable time inter- Considering one of the two specieg;) with dispersal
vals between each phase is a pattern of on-off intermittency&t€ near zero and with stationary behavior, the dynamics of
Nevertheless, as noise is unavoidably present in ecologic&l® high-dispersing speciez;] can be described in the case
systems, another plausible and interesting hypothesis to eff two identical patches by the simplified version of the
plain this scenario leading to coexistence should be “attracHolt-McPeek model established ]
tor bubbling” [7-9].

u(t+1)=Aexpr[1—u(t)]}u(t),
2
*Electronic address: Bernard.Cazelles@snv.jussieu.fr v(t+1)=Bexp{r[1-u(t)]}[1—ru(t)Jv(t),
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FIG. 1. On-off intermittency in the simplified Holt-McPeek FIG. 2. Bubbling in the simplified Holt-McPeek modd). (a)
model(2). (a) Intermittent dynamics af(t), the difference between |ntermittent dynamics ob(t), the difference between the high-
the high-dispersing species;) of the two patchesb) Distribution  gjspersing speciesx() of the two patches(b) Distribution of the
of the finite time fluctuations ok, (Ay=\,) characterizing the finjte time fluctuations o, (Ay=X\,) characterizing the stability
stability of the synchronization manifold,= 0. (c) Distribution of of the synchronization manifold,= 0. (c) Distribution of the “off”

the “off” phases (defined by perfect synchronous dynamics0)  phasegdefined by perfect synchronous dynamics0) of duration
of durationD. In (c) the straight line corresponds to the theoretical D. In (c) the straight line corresponds to an estimated slﬁ’pe

distribution with slope 8=—3/2. The parameter values are ~—2. The parameter values are-4.5, e=0.45,m=0.350, and
=4.5,e=0.45, andm=0.336. =108 - T R

where A=1-e+me B=1-e—me u(t)=[xy(t) manifoldv =0 is asymptotically stable. As the synchroniza-
+X,(1)1/2k(1), v(t) =[x, (t) —X,(t)]/2k(t), andk(t) is the tion manifold is weakly stablgx, <0, see Fig. )], it is
time dependent carrying capacities of the two identicallocally repelling thus small perturbation will result in a brief
patcheg k(t) =k (t) =k,(t)]. excursion from the synchronization manifold. These desyn-
Figure 1 summarizes some of the results presented ronization events recur because the chaotic evolution
Harrisonet al. [4]. Figure 1a) shows the intermittent evolu- brings it into the neighborhood of the repelling trajectories
tion of v(t). The line v=0 defined the synchronization an infinite number of times. In this case the power law is
manifold of which the stability is characterized by the trans-deviating from the universal power law governing on-off in-
verse Lyapunov exponenk (). The “off” state is defined by  termittency (3= —3/2), and we observg~ —2.
the synchronization of the high-dispersal speaes0. Dur- To corroborate our results about the importance of attrac-
ing the “on” state the populations of the two patches aretor bubbling in population dynamics, we provide another ex-
repelled fromv =0 and become desynchronized. After someample concerning the evolution of intermittent rare species.
period of time the trajectories in the “on” state will be reat-  Competition between different species can be modeled as
tracted toward the “off” statdsee, Fig. 1a)]. Figure 1b) a dynamical system with an invariant subspace correspond-
displays the distribution of the finite time fluctuations of ing to the extinction of ongor more species[1-3|, for
N, (1) and underlines that in this particular case the synchroinstancex;=0 in the Holt-McPeek mode(1). The loss of
nization manifold is slightly unstablex( =0). Then on-off  stability of the attractor in the invariant subspace means that
intermittency can develop. Figurgd confirms the occur- the corresponding specieg;) can invade and coexist with
rence of on-off intermittency in the behaviorwft) showing  other speciesy() [2].
that the probability distribution of the “off” phase®(D) Figure 3 displays an example of dynamics associated to
depends on their duratioD as P(D)=D#, with B=—3/2  attractor bubbling in this particular context with the Holt-
the universal scaling coefficient characterizing on-off inter-McPeek model1). Figure 3a) displays the intermittent dy-
mittency[10]. namics ofx,(t) [similar erratic dynamics is observed for
Another interesting behavior that can also explain the scex,(t)]. Figure 3b) shows the distribution of the transverse
nario leading to the coexistence of dispersing species is atyapunov exponent and Fig(& shows the probability dis-
tractor bubbling. To study bubbling we have added somadribution of the frequency of the phase of rafity (t) =0] of
uniform noise to the equation @f(t) with intensityo. Fig-  durationD. As in Fig. 2, the pattern of the intermittences
ure 2 summarizes our results. Figur@?2displays the inter- shown on Fig. 3 is typical of attractor bubbling, i.e., noise-
mittent dynamics ofv(t), Fig. 2b) the distribution of the driven intermittences with asymptotically stable invariant
transverse Lyapunov exponent, and Fi¢c)2he power law  manifold x;=0. As the invariant manifold is weakly stable
of the frequency of laminar phases of duratidnThe pattern [\, =0, see Fig. @)], it is locally repelling thus a small
of the intermittences shown on Fig. 2 is different from the perturbation will result in a brief excursion from the invari-
previous cas€Fig. 1) and is typical of attractor bubbling, i.e. ant manifold, i.e., in a brief intermittent invasion of the rare
noise-driven intermittences despite that the synchronizatiospeciesx;. In this case the probability distribution of the
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FIG. 3. Bubbling in the Holt-McPeek modél) when the in- FIG. 4. Bubbling in a host-parasitoids community moda)

variant manifold is defined by the extinction of thespecies(a)  With @ specialisty) and a generalist parasitoid) when the invari-
Intermittent dynamics ok,(t). (b) Distribution of the finite time ant manifold is defined by _the extinction of the s_pecnallst porosnond
fluctuations ofk, (\y=\,) characterizing the stability of the in- (¥)- (& Intermittent dynamics of(t). (b) Distribution of the finite
variant manifold,x;= 0. (c) Distribution of the “off” phases(de-  time fluctuations of, (Ar=A,) characterizing the stability of the
fined by the extinction of the; species of durationD. In (c) the  invariant manifold,y=0. (c) Distribution of the “off” phases(de-

. . . - fined by the extinction of the specialist parasitgidof durationD.
straight line corresponds to an estimated slgpe—1.8. The pa- ’ . i A
rameter values aree,;=0.5,r,=3, k;=100,e,=0.01,r,=3, k, In (c) the straight line corresponds to an estimated s|épe-1.8.
=50.m=0.19. ando=10"4. The parameter values amg=2.8,k;=5,a,=2.165,k,=0.3,a;

' ’ =0.5,c;3=2, ando=10"".

frequency of the phase of rarifyx;(t)=0] shows a well-
defined power law with an estimated scaling coefficignt tent behavior of the specialist parasitgidFig. 4(b) shows
~—1.8. the distribution of the transverse Lyapunov exponent and

This type of intermittent behavior associated to a weaklyFig. 4(c) shows the power law of the frequency of laminar
stable submanifold is present in all the models of competiphases of duratiorD. The pattern of the intermittences
tion between species employed in R¢fs-3]. One can also shown on Fig. 4 appears similar to that of previous figures
observe attractor bubbling in population model with preda{Figs. 2 and 3and is typical of attractor bubbling.
tion or host-parasitoid interactions. To illustrate this last Here we have explored noise-induced attractor bubbling
point, we took into account the destabilizing effect of a gen-put another scenario generating attractor bubbling is linked
eralist parasitoid modeled by a Nicholson-Bailey mdddl]  to parameter mismatchg,8]. Small changes in some of the
that invades a dynamically stable “host-specialist parasitoiharameters can destroy the invariant manifadefined by
community” described by a May host-parasitoid moff2].  gynchronous dynamics or species extincidvevertheless if

The model reads the mismatches are small the attractor that exists in the in-
variant manifold is replaced by an attractor that is restricted
X(t) ay(t)k |n i_ts neighborhood. Then every orbit thot appr.oachos_ the
X(t+ 1)=x(t)exp[ fl( 1— k_) ” ” } initial manifold can spent some period of time in its vicinity
1 2 before bursting away. This sort of dynamics can arise in the
X exp{ —agz(t)}, simplified model described by Harrisat al. [4] when the
carrying capacities in the two patches are differghy(t)
ka #k,(t)]. These parameter mismatches break down the sta-
)exp{—agz(t)}, (3)  bility and the invariance of the synchronization manifold and
cause the system to burst away from the invariant manifold
intermittently even if on average it is attracting.
z(t+1)=ca[x(t) +y()][1—exp{—asz(t)}], These re)éults suggest thatgon-off intermitte?ncy is not the
wherex, y, andzare the host, the specialist parasitoid and the®Ny Phenomena that can explain the intermittences leading
generalist parasitoid, respectively.is the growth rate of the 10 the Coexistence of competing species in spatially extended
host, k; is the carrying capacity of the environment of the ecolog|cal systems. As noise and parameter fluctu§t|ons are
host, a; are the attack rates of the parasitgidk, is the unavoidable and ubiquitous in ecological systems, intermit-
parameter of the density dependence of the attack function dent dynamics associated to attractor bubbling appears to be
the specialist parasitoid, arg, is the number of generalist another interesting mechanism to explain the erratic alterna-
parasitoid produced by infested host. tion of the synchronized-desynchronized behavior of two
Figure 4 displays an example of the intermittent dynamicsspecies in a two-patch system, as well as for the dynamics of
associated to the modé3). Figure 4a) shows the intermit- intermittent rare species.

azy(t)
Ky

y(t+1)=x(t)<1—[1+
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